I am considering a problem in Browder's Mathematical Analysis:
Let $(a_n)_{n=1}^{\infty}$ be a sequence in $\mathbb{R}$.
(a) Show that if $\lim_{n \rightarrow \infty} a_n = A$ exists, then $$\lim_{n \rightarrow \infty} \frac{a_1 + \dots + a_n}{n} = A.$$
Proof: Without loss of generality, suppose $a_n \rightarrow 0$. Fix $\epsilon > 0$. Then there exists an $N \in \mathbb{N}:\ \forall n \geq N$, $|a_n| < \epsilon.$ Set $S_N = \sum_{k=1}^N |a_k|.$ Choose $\tilde{N} > N:\ \forall n \geq \tilde{N}$, $$\frac{S_N}{n} < \epsilon.$$ Then if $n \geq \tilde{N} > N$, \begin{align*} \left|\frac{a_1 + \dots + a_n}{n}\right| & \leq \frac{1}{n}\left(|a_1| + \dots + |a_n|\right) \\ & = \frac{S_N}{n} + \frac{|a_{N+1}| + \dots + |a_n|}{n} \\ & < \epsilon + \frac{(n-(N+1))\epsilon}{n} \\ & \leq 2 \epsilon. \end{align*}
(b) Show that if $\sum a_n$ converges, then $$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n ka_k = 0.$$
Unfortunately I am having trouble proving part (b). I believe that the assumption that the series $\sum a_n$ converges tells us that the sequence $na_n \rightarrow 0$, i.e. that the sequence $a_n$ converges fairly quickly to zero. If this is the case, I can invoke the result in part (a) and conclude but I am not sure how to proceed. I've seen an extremely similar question asked here: Series converges implies $\lim{n a_n} = 0$ but this question does not place any assumptions on the monotonicity on the sequence $a_n$.