let $X$ be a finite measure space and $\{f_n\}$ be a sequence of integrable functions, $f_n \rightarrow f\text{ a.e.}$ on $ X$. I want to show if (1) holds, then (2) holds too.
$$\lim_{n \rightarrow \infty}\int_X |f_n| \, d\mu=\int_X |f| \, d\mu,\tag{1}$$
$$\lim_{n \rightarrow \infty}\int_X |f_n-f| \, d\mu=0.\tag{2}$$
My attempt:
I have proven that (2) holds for nonnegative $f$. Then for the general case, I split the set to $E^+=\{x: f \geq 0\}$ and $E^-=\{x: f \leq 0\}$:
$$\lim_{n \rightarrow \infty}\int_{E^+} f_n \, d\mu-\int_{E^+} f \, d\mu -\lim_{n \rightarrow \infty}\int_{E^-} f_n \, d\mu+\int_{E^-} f \, d\mu=0$$
But I don't know how to proceed from here!