3

Find :
$$\lim _{n\rightarrow +\infty }\sqrt [n] {\dfrac {\left( 2n\right) !} {n!n^{n}}}$$

amWhy
  • 209,954
Am ine
  • 101

1 Answers1

4

Use $$(2n)!=2^n \cdot n! \cdot 1 \cdot 3 \cdot 5 \ldots (2n-1)$$

Now pull $2^n$ out of the root, cancel out $n!$ and then use logarithms.

You'll get :

$$A=\sqrt[n]{\frac{(2n)!}{n!n^n}} \implies \ln A=\ln2 +\sum_{r=1}^{n}\ln\left(\frac{2r-1}{n} \right)$$

Can you proceed now (Using Riemann Integrals)?

The answer is $\dfrac{4}{e}$

Jaideep Khare
  • 19,293