The part of the decomposition theorem $11.12$ corresponding to the subgroups of prime power order can also be written in the form
$\mathbb{Z}_{m_1}\times \mathbb{Z}_{m_2}\times \cdots \times \mathbb{Z}_m$, where $m_i$ divides $m_{i+1}$ for $i=1,2,\cdots,r-1$
The numbers $m_i$ can be shown to be unique, and are the torsion coefficients of $G$
-Find the torsion coefficents of $\mathbb{Z}_4\times\mathbb{Z}_9$
The theorem $11.12$ is concerned about a finitely generated abelian group being isomorphic to
$$\mathbb{Z}_{(p_1)^{r_1}}\times \mathbb{Z}_{(p_2)^{r_2}}\times \cdots \times \mathbb{Z}_{(p_n)^{r_n}}\times \mathbb{Z}\times \mathbb{Z} \cdots \times \mathbb{Z}$$
How can I represent $\mathbb{Z}_4\times\mathbb{Z}_9$ in the form $\mathbb{Z}_{m_1}\times \mathbb{Z}_{m_2}\times \cdots \times \mathbb{Z}_m$?