I need to prove the following identity:
$\sin^2 2\alpha-\sin^2 \alpha = \sin 3\alpha \sin \alpha$
What I have tried, is to work on each side of the identity. I have started with the left side:
\begin{align} \sin^2 2\alpha-\sin^2 \alpha &= (\sin 2\alpha-\sin \alpha)(\sin 2\alpha+\sin \alpha)\\ &=(2\sin\alpha \cos\alpha-\sin \alpha)(2\sin \alpha \cos \alpha+\sin \alpha)\\ &=\sin\alpha(2\cos\alpha-1)\sin \alpha(2\cos \alpha+1)\\ &=\sin^2 \alpha(2\cos^2 \alpha-1)\\ &=\sin^2\alpha \cos 2\alpha \end{align}
Then, I moved on to the right side of the identity:
\begin{align} \sin 3\alpha \sin \alpha&=\sin(2\alpha+\alpha) \sin \alpha\\ &=\sin \alpha(\sin 2\alpha \cos \alpha + \sin \alpha \cos 2\alpha)\\ &=\sin \alpha[2 \sin \alpha \cos^2 \alpha+\sin \alpha(\cos^2 \alpha-\sin ^2 \alpha)]\\ &=\sin^2 \alpha(3\cos^2\alpha-\sin^2\alpha)\\ &=\sin^2\alpha(4\cos^2\alpha+1) \end{align}
I'm not sure how to continue. Any tips?