Just use a suitable notation to prove the various properties of the determinant.
For $I=\{1,\ldots, i,\ldots,n\}$ and $J=\{1,\ldots, j,\ldots,n\}$ fix the index set notation: $I_i=I-\{i\}$ for $i=1,2,\ldots,n$ and $J_j=J-\{j\}$ for $j=1,2,\ldots,n$. Now fix the index notation for matrices:
$$
M= \left\lgroup M_{ij} \right\rgroup_{\substack{ i\in I\\j\in J}}=
\begin{pmatrix}
M_{11} &\ldots & M_{1j-1}\;M_{1j}\;M_{1j+1}&\ldots & M_{1n}\\
\vdots & &\vdots & &\vdots \\
M_{i-11} &\ldots & M_{i-1j-1}\; M_{i-1j}\; M_{i-1j+1}&\ldots & M_{i-1n}\\
M_{i1} &\ldots & M_{ij-1}\; M_{ij}\; M_{ij+1}&\ldots & M_{in}\\
M_{i+11} &\ldots & M_{i+1j-1}\; M_{i+1j}\; M_{i+1j+1}&\ldots & M_{i+1n}\\
\vdots & &\vdots & &\vdots \\
M_{n1} &\ldots & M_{nj-1}\;M_{nj}\;M_{nj+1}&\ldots & M_{nn}\\
\end{pmatrix}_{n\times n}
$$
$$
\left\lgroup M_{uv} \right\rgroup_{\substack{ u\in I_i\\v\in J_j}}
=
\begin{pmatrix}
M_{11} &\ldots & M_{1j-1}\;M_{1j+1}&\ldots & M_{1n}\\
\vdots & &\vdots & &\vdots \\
M_{i-11} &\ldots & M_{i-1j-1}\; M_{i-1j+1}&\ldots & M_{i-1n}\\
M_{i+11} &\ldots & M_{i+1j-1}\; M_{i+1j+1}&\ldots & M_{i+1n}\\
\vdots & &\vdots & &\vdots \\
M_{n1} &\ldots & M_{nj-1}\;M_{nj+1}&\ldots & M_{nn}\\
\end{pmatrix}_{(n-1)\times (n-1)}
\\
\left\lgroup M_{uv} \right\rgroup_{\substack{ u\in I_i\\v\in J_j}}
=
\begin{pmatrix}
M_{11} &\ldots & M_{1v}&\ldots & M_{1 n-1}\\
\vdots & &\vdots & &\vdots \\
M_{u1} &\ldots & M_{uv}&\ldots & M_{u n-1}\\
\vdots & &\vdots & &\vdots \\
M_{n-1 1} &\ldots & M_{n-1v}&\ldots & M_{n-1n-1}\\
\end{pmatrix}_{(n-1)\times (n-1)}
$$
Then the expansion on line $i$ is
$$
\det \left\lgroup
M_{ij}
\right\rgroup_{\substack{i\in I\\ j\in J}}
=
\sum_{j=1}^{n} M_{ij}(-1)^{i+j}\det
\left\lgroup
M_{uv}
\right\rgroup_{\substack{u\in I_i\\ v\in J_j}}
$$
and the expansion on column $j$ is
$$
\det \left\lgroup
M_{ij}
\right\rgroup_{\substack{i\in I\\ j\in J}}
=
\sum_{i=1}^{n} M_{ij}(-1)^{i+j}\det
\left\lgroup
M_{uv}
\right\rgroup_{\substack{u\in I_i\\ v\in J_j}}
$$