Let $F(t)$ and $\hat F(\omega)$ be Fourier Transform pairs such that
$$\hat F(\omega)=\int_{-\infty}^\infty F(t)e^{-i\omega t}\,dt \tag 1$$
and
$$F(t)=\frac{1}{2\pi}\int_{-\infty}^\infty \hat F(\omega)e^{i\omega t}\,d\omega \tag 2$$
In the problem of interest, $F(t)=\int_{-\infty}^\infty\frac{e^{i\omega t}}{\omega -i\epsilon}\,d\omega$ and therefore $\hat F(\omega)=\frac{2\pi}{\omega -i \epsilon}$.
We can evaluate $F(t)$ using contour integration. We observe that the integrand has a simple pole at $\omega =i\epsilon$ in the upper-half plane.
We let $C_R$ be the contour comprised of the real-line segment $-R$ to $R$ and the semicircular arc centered at the origin with radius $R$ in the upper-half plane.
Then, for $t>0$
$$\oint_{C_R}\frac{e^{i\omega t}}{\omega -i\epsilon}\,d\omega=\int_{-R}^R\frac{e^{i\omega t}}{\omega -i\epsilon}\,d\omega+\int_0^{\pi}\frac{e^{iRe^{i\phi}t}}{Re^{i\phi}-i\epsilon}\,iRe^{i\phi}\,d\phi\tag3$$
The residue theorem guarantees that for $R>\epsilon$
$$\oint_{C_R}\frac{e^{i\omega t}}{\omega -i\epsilon}\,d\omega=2\pi i \text{Res}\left(\frac{e^{i\omega t}}{\omega -i\epsilon}, \omega =i\epsilon\right)=2\pi i e^{-\epsilon t}$$
Moreover, as $R\to \infty$, the integral on the right-hand side of $(3)$ approaches $0$.
Putting it all together yields
$$\int_{-\infty}^\infty\frac{e^{i\omega t}}{\omega -i\epsilon}\,d\omega=2\pi i e^{- \epsilon t}$$
for $t>0$.
For $t<0$, we change the contour so that the semi-circular arc is in the lower-half plane. In this case, there is no singularity and Cauchy's Integral Theorem guarantees that
$$\int_{-\infty}^\infty\frac{e^{i\omega t}}{\omega -i\epsilon}\,d\omega=0$$
for $t<0$.
Therefore,
$$\bbox[5px,border:2px solid #C0A000]{F(t)=\begin{cases}2\pi i e^{-\epsilon t}&,t>0\\\\0&,t<0\end{cases}}$$