We can make use of the Riemann-Stieltjes integral. Proceeding we enforce the substitution $x=f(t)$ to obtain
$$\begin{align}
\int_0^b f^{-1}(x)\,dx&=\int_{0}^{f^{-1}(b)} t\,df(t)\\\\
&=bf^{-1}(b)-\int_0^{f^{-1}(b)}f(t)\,dt\tag 1
\end{align}$$
ASIDE:
Continuous monotonic functions are differentiable almost everywhere (i.e., everywhere excluding a set of measure $0$). But it is important to stress that in using the Riemann-Stieltjes Integral in $(1)$, we did not assume that $f$ was differentiable.
Using $(1)$ we see that
$$\int_0^a f(x)\,dx+\int_0^b f^{-1}(x)\,dx=\int_{f^{-1}(b)}^af(x)\,dx+bf^{-1}(b)\tag 2$$
If $a>f^{-1}(b)$, then $\int_{f^{-1}(b)}^af(x)\,dx\ge b(a-f^{-1}(b))$ since $f$ is increasing. Therefore, we assert that
$$\int_0^a f(x)\,dx+\int_0^b f^{-1}(x)\,dx\ge ab \tag 3$$
If $a<f^{-1}(b)$, then $\int_{f^{-1}(b)}^af(x)\,dx=-\int_a^{f^{-1}(b)}f(x)\,dx\ge -b(f^{-1}(b)-a)$ since $f$ is increasing. Therefore, we assert that
$$\int_0^a f(x)\,dx+\int_0^b f^{-1}(x)\,dx\ge ab \tag 4$$
Finally, if $a=f^{-1}(b)$, then we see directly from $(2)$ that
$$\int_0^a f(x)\,dx+\int_0^b f^{-1}(x)\,dx\ge ab \tag 5$$
Putting together $(3)$, $(4)$, and $(5)$ yields the coveted result
$$\bbox[5px,border:2px solid #C0A000]{\int_0^a f(x)\,dx+\int_0^b f^{-1}(x)\,dx\ge ab}$$
as was to be shown!