15

My friends and I are finishing High School in Denmark. We have to do a math poster for some school activity, where the poster needs to have something to do with the number $7$. So my question is: does someone know a cool mathematical function that converges towards $7$? We covered Calculus III, so we should be able to understand a little math!

Xetrov
  • 2,089

10 Answers10

14

One with the Fibonacci sequence:

$$ \lim_{n\to\infty}\frac{4F_{n+1}^2 - 4F_{n+1}F_n + 3F_n^2}{F_n^2} = \lim_{n\to\infty}\left(2\frac{F_{n+1}}{F_n} - 1\right)^2 + 2 = 7. $$

10

If integrals are acceptable, this one is nice:

$$ 7= \frac{1}{\displaystyle\int_0^1 \frac{x^4(1-x)^4}{1+x^2} \, dx +\pi-3} $$

(source: Wikipedia)

lhf
  • 216,483
  • Whoa! The famous "$\frac {22} {7}- \pi$" integral. Clever ! (+unity) –  Apr 26 '17 at 09:02
9

Here is one that looks crazy at first, but it is actually quite simple:

$$\lim\limits_{N\to\infty}\left[\frac N{3\pi}\sin\left(\frac{42}{N}\sum\limits_{k=1}^N\left(\frac{\pi}{\pi+2}\right)^k\right)\right] = 7. $$

Eff
  • 12,989
6

What about $7+a_n$ where $a_n$ converges to $0$? You could then proceed to find any fancy function you want, like

$$a_n=7+\frac{7}{7^{7n+7}}$$

converges to $7$.


Or, given a sequence $b_n$ converging to $L\neq 0$, the sequence $\frac7Lb_n$ converges to $7$, like

$$a_n=\left(7-\frac{7}{7}\right)\sum_{k=0}^n\frac{1}{7^k}$$

converges to $7$.


Some other cool facts about $7$ can be found on Wikipedia's page on 7.
6

$$8-\frac 87+\frac{8}{49}-\frac{8}{343}+...$$

Or, maybe

$$\sqrt[n]{\sum_{r=0}^n\binom{n}{r}6^r}$$

David Quinn
  • 34,121
5

$111_2 = 7$

$0.111\ldots_8 = 1/7$.

Ethan Bolker
  • 95,224
  • 7
  • 108
  • 199
5

There is Newton's method for square root. Let $$ x_{n+1}=\frac12\left(x_n+\frac{49}{x_n}\right) $$ for any $x_0 > 0$. Then $x_n \to 7$.

lhf
  • 216,483
1

Simple:


$$\lim_{x \rightarrow\infty} \frac{n}{x}+7=7$$ where $n =$ any number


Xetrov
  • 2,089
0

Not a strict answer to the question, but still related to calculs : the Borwein integrals. Let us denote by $\operatorname{sinc}$ the sinus cardinal function $\operatorname{sinc}x=\frac{\sin x}{x}$ and consider the following integrals defined for any natural number $n$: $$B_n=\int_0^\infty \left(\prod_{k=0}^n \operatorname{sinc}\frac{x}{2k+1}\right)\,\mathrm{d}x.$$ Then you have $B_n=\frac{\pi}{2}$ if and only if $n<7$.

Tom-Tom
  • 6,867
0

$$\lim_{x \to 0} \frac{\sin(21x)}{3x}=7$$

frog1944
  • 2,357