1

Prove that : $$\binom {2n}{n}=\sum_{r=0}^n \left[\binom nr\right]^2.$$

First of all, I tried to do in the principle of mathematical induction but I failed. Next, I expressed the binomial in algebraic form but I am not able to calculate $c$ this huge number. Somebody please help me.

Clayton
  • 24,751

3 Answers3

8

I'll give you a hint toward a combinatorial proof.

First, note that $\binom{2n}{n}$ is precisely the way to choose a committee of $n$ people out of a group containing $n$ men and $n$ women.

Next, note that $$ \sum_{r=0}^{n}\binom{n}{r}^2=\sum_{r=0}^{n}\binom{n}{r}\binom{n}{n-r}, $$ since $\binom{n}{n-r}=\binom{n}{r}$. Can you see how to interpret this last sum as the number of ways to choose such a committee?

Nick Peterson
  • 32,430
3

There is an algebraic proof: note that $$(x+1)^{2n}=\sum_{k=0}^{2n}\binom{2n}{k}x^{k}$$ $$(x+1)^{2n}=\left (\sum_{k=0}^{n}\binom{n}{k}x^{k}\right )^{2}=\sum_{k=0}^{2n}\left (\sum_{i=0}^{k}\binom{n}{i}\binom{n}{k-i}\right )x^{k}$$ Then, $$ \binom{2n}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{n}{k-i}$$ for all $k$. Your equality is the case $k=n$.

Veridian Dynamics
  • 2,471
  • 9
  • 14
0

You can use induction but first we need to rewrite as:

$\binom{m+n}{k} = \sum_{r=0}^{k} \binom{m}{r}\binom{n}{k-r}$

Assume true for $n\ge 1.$ Consider the case for $n+1$:

$\binom{m+n+1}{k} = \sum_{r=0}^{k} \binom{m}{r}\binom{n+1}{k-r}= \sum_{r=0}^{k} \binom{m}{r}(\binom{n}{k-r} + \binom{n}{k-r-1})$

$= \sum_{r=0}^{k}\binom{m}{r}\binom{n}{k-r} + \sum_{r=0}^{k} \binom{m}{r}\binom{n}{k-1-r}$

$= \binom{m+n}{k} + \binom{m+n}{k-1} = \binom{m+n+1}{k}$

mathguy
  • 59
sku
  • 2,643