You can use the Identity:
$$ \begin{pmatrix}
n \\
r
\end{pmatrix} =
\begin{pmatrix}
n - 1 \\
r
\end{pmatrix} + \begin{pmatrix}
n - 1 \\
r - 1
\end{pmatrix}$$
Recursively in the last term { $C(n - 1, r - 1)$ }. Doing this you will have:
$$ \begin{pmatrix} n \\r \end{pmatrix} = \begin{pmatrix} n - 1 \\r \end{pmatrix} + \begin{pmatrix} n - 1 \\r -1 \end{pmatrix} $$
for the first iteration, then:
$$\begin{pmatrix} n \\r \end{pmatrix} = \begin{pmatrix} n - 1 \\r \end{pmatrix} + \begin{pmatrix} n - 2 \\r -1 \end{pmatrix} + \begin{pmatrix} n - 2 \\r - 2 \end{pmatrix}$$
Recursively this leads to:
$$\begin{pmatrix} n \\r \end{pmatrix} = \begin{pmatrix} n - 1 \\r \end{pmatrix} + \begin{pmatrix} n - 2 \\r -1 \end{pmatrix} + \begin{pmatrix} n - 3 \\r - 2 \end{pmatrix} + \begin{pmatrix} n - 4 \\r - 3 \end{pmatrix} + ... + \begin{pmatrix} n - r + 1 \\r - r \end{pmatrix} $$
For all other coming values the terms vanishes to zero ($ C(n, r) = 0 \hspace{2mm} \forall \hspace{2mm} r > n $)
this can be written is sigma notation as:
$$ \begin{pmatrix} n \\r \end{pmatrix} = \sum_{i=0}^{r} \begin{pmatrix} n - 1 - i \\r - i \end{pmatrix} $$
Changing the index
$$ j = i + 1 $$
We can write the summation as fallows:
$$ \sum_{i=0}^{r} \begin{pmatrix} n - 1 - i \\r - i \end{pmatrix} =
\sum_{j = 1}^{r + 1} \begin{pmatrix} n - 1 - (j - 1) \\r - (j - 1) \end{pmatrix}
$$
This is:
$$
\sum_{j = 1}^{r + 1} \begin{pmatrix} n - j \\r - j + 1 \end{pmatrix}
$$
And obviously we can change the dummie index as $ j \longrightarrow i $ .