Prove the following inequality
$$\ln \frac{\pi + 2}{2} \cdot \frac{2}{\pi} < \int \limits_0^{\pi/2} \frac{\sin\ x}{x^2 + x} < \ln \frac{\pi + 2}{2}$$
I can prove that $\frac{\sin\ x}{x^2 + x} < \frac{1}{x + 1} \ \forall x \in (0, +\infty) \Rightarrow \int \limits_0^{\pi/2} \frac{\sin\ x}{x^2 + x} < \int \limits_0^{\pi/2} \frac{1}{x + 1} = \ln \frac{\pi + 2}{2}$.
Unfortunately, I don't know what happens when $x = 0$.
I can prove $\leqslant$ on LHS using Mean Value Theorem, but I have no idea how to prove that the sign is strict.