0

How to show convergence of : $$\lim_{n \to \infty}\sum_{k=1}^{n} \frac{n+k}{(n^2+k^2)}$$

jimjim
  • 9,675
Lola
  • 1,601
  • 1
  • 8
  • 19

1 Answers1

4

We will try to evaluate it using limit of a sum which will eventually prove that it converges.

$$\lim_{n \to \infty} \sum_{k=1}^n \frac{(n+k)\frac{1}{n^2}}{(n^2+k^2)\frac{1}{n^2}}$$ $$\lim_{n \to \infty} \sum_{k=1}^n \frac{(1+\frac{k}{n})\frac{1}{n}}{(1+\frac{k^2}{n^2})}$$ Converting it into a definite integral. $$\int_{0}^1 \frac{1+x}{1+x^2} dx$$ $$\int_{0}^1 \left(\frac{1}{1+x^2}+\frac{x}{1+x^2}\right) dx$$ This can be easily evaluated.

The result comes out to be $\frac{\pi}{4} + \frac{1}{2}ln2$

Which proves that it the given sum converges.