First, notice that we will have problems around $x=0$ and $x=1$ for our integral, so the problem we are trying to solve is the improper integral $$\int_0^1 \log(\sin(\pi x))dx=\lim_{c\to 0^+}\lim_{d\to 1^-} \int_c^d \log(\sin(\pi x))dx.$$ Since we are dealing with a complex logarithm function, you are going to have to define a branch cut, so restrict $\frac{-5\pi}{4}<\arg(z)<\frac{3\pi}{4},$ and $$\log(z)=\log(|z|)+i\arg(z)$$ will be well defined on the domain $\mathbb{C}\sim \{z\in \mathbb{C}|\frac{-5\pi}{4}<\arg(z)<\frac{3\pi}{4}\}.$
Now that we have defined our domain, we will have the property $\log(z_1z_2)=\log(z_1)+\log(z_2)+n\pi$ for $n\in N$ for all $z_1,z_2$ in our domain.
Thus we will see $$\log(\sin(\pi z))=\log\Big(\frac{e^{i\pi z}-e^{-i\pi z}}{2i}\Big)=\log\Big(-e^{i\pi z}+e^{-i\pi z}\Big)-\log(-2i)+n\pi i$$
Now to find what value of $n$ we introduce, consider that $\arg(\frac{e^{i\pi z}-e^{-i\pi z}}{2i})=0$ and $$\arg(e^{i\pi z}-e^{-i\pi z})=\frac{\pi}{2},$$ and $$\arg(-2i)=-\frac{\pi}{2},$$ and thus $$\arg(e^{i\pi z}-e^{-i\pi z})-\arg(-2i)=\pi,$$ so $n=1$. Continuing, we have: $$\log\Big(-e^{i\pi z}+e^{-i\pi z}\Big)-\log(-2i)+\pi i=\log\Big(e^{-i\pi z}(-e^{2i\pi z}+1)\Big)-\log(-2i)+\pi i$$ $$=\log(e^{-i\pi z})+\log(-e^{2i\pi z}+1)-\log(-2i)+(n+1) \pi i.$$ Considering what happens to the argument of these two functions, at $z=.5$, $\arg(e^{-i\pi z})=-\frac{\pi}{2}$ and $\arg(-e^{2i\pi z}+1)=0.$ So the thus, $$\arg(-e^{2i\pi z}+1)+ \arg(e^{-i\pi z})=-\frac{\pi}{2},$$ which is a full $-\pi$ away from what we get from $\arg(e^{i\pi z}-e^{-i\pi z})$ and as $n$ is constant in our domain, $n=-1$. Now, $$\log(e^{-i\pi z})+\log(-e^{2i\pi z}+1)-\log(-2i)=-i\pi z+\log(-e^{2i\pi z}+1)-\log(-2i).$$ Thus we have shown $$\log(\sin(\pi z))=-i\pi z+\log(-e^{2i\pi z}+1)-\log(-2i).$$