We will evaluate the limit using only standard inequalities and the squeeze theorem. To that end, we begin with a short primer.
PRIMER ON STANDARD INEQUAITIES
In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm and exponential functions satisfy the inequalities
$$\frac{x-1}{x}\le\log(x)\le x-1 \tag 1$$
for $x>0$ and
$$1+x\le e^x\le \frac{1}{1-x}\tag 2$$
for $x<1$
First, note that we can write $(1+x)^a=e^{a\log(1+x)}$. Then, using $(1)$ and $(2)$ we find that for $ax<1$
$$\frac{a}{x+1}\le\frac{(1+x)^a-1}{x}\le \frac{a}{1-ax}\tag3$$
whence applying the squeeze theorem to $(3)$ yields the coveted limit
$$\bbox[5px,border:2px solid #C0A000]{\lim_{x\to 0}\frac{(1+x)^a-1}{x}=a}$$