The given series can be written as
$$\begin{eqnarray*} \sum_{n\geq N}\frac{\Gamma(n+1-a)\,\Gamma(N)}{\Gamma(N-a)\,\Gamma(n+1)}&=&\frac{\Gamma(N)}{\Gamma(N-a)}\sum_{n\geq N}\frac{\Gamma(n+1-a)}{\Gamma(n+1)}\\&=&\frac{\Gamma(N)}{\Gamma(N-a)\Gamma(a)}\sum_{n\geq N}B(n+1-a,a)\\&=&\frac{\Gamma(N)}{\Gamma(N-a)\Gamma(a)}\int_{0}^{1}\sum_{n\geq N}(1-x)^{a-1}x^{n-a}\,dx\\&=&\frac{\Gamma(N)}{\Gamma(N-a)\Gamma(a)}\int_{0}^{1}x^{N-a}(1-x)^{a-2}\,dx\\&=&\frac{\Gamma(N)}{\Gamma(N-a)\Gamma(a)}B(N+1-a,a-1)\\&=&\color{red}{\frac{N-a}{a-1}}\end{eqnarray*}$$
by exploiting Euler's Beta function.
The given series is convergent since $\frac{\Gamma(n+1-a)}{\Gamma(n+1)}$ behaves like $\frac{1}{n^a}$ (that is summable for $a>1$) by Gautschi's inequality.