Finding total number of digits in $2017!$
Attempt: total number of digits in $n, n \in \mathbb{N}$ is equal to $1+\lfloor \log_{10}(n) \rfloor$
so number of digits in $2017!$ is $\displaystyle 1+\lfloor \log_{10}(2017!)\rfloor$
so $$\log_{10}(2017!) = \log_{10}(1)+\log_{10}(2)+\cdots +\log_{10}(2017)$$
could some help me how to calculate it , thanks