Let $A: X \rightarrow Y$ be linear function between normed spaces $X$, $Y,\ dimX \lt \infty$. Prove that A is continous.
Since $A$ is linear I know that there exists $k \in \mathbb{R}$ such that $||A(x)||\le k||x||$ for all $x \in X$.
So now I check $||A(x)-A(y)||=||A(x-y)||\le k||x-y||=k\delta=\epsilon$ supposing $||x-y||\lt \delta=\epsilon/k$
Is it a correct proof?