1

Let $A: X \rightarrow Y$ be linear function between normed spaces $X$, $Y,\ dimX \lt \infty$. Prove that A is continous.

Since $A$ is linear I know that there exists $k \in \mathbb{R}$ such that $||A(x)||\le k||x||$ for all $x \in X$.

So now I check $||A(x)-A(y)||=||A(x-y)||\le k||x-y||=k\delta=\epsilon$ supposing $||x-y||\lt \delta=\epsilon/k$

Is it a correct proof?

maq
  • 669

1 Answers1

1

Since $X$ is finite dimensional space, all norms are equivalent in X, so let $(e_i)_i$ be a finite algebriac basis of $X$ and we equipe $X$ by the norme: $$ \|x:=x_1e_1+\dots x_ne_n\|=\sum_i |x_i| $$ so $$ \|Ax\|=\|\sum_i x_i Ae_i\|\leq\sum_i \|x_i Ae_i\| \leq\max_i \|Ae_i\|\sum_i |x_i|=\alpha \|x\| $$ Where $\alpha=\max_i \|Ae_i\|<\infty$ So $A$ is continuous

Hamza
  • 3,781