Clearly, $x=n\pi$ (where $n$ is any integer) is a trivial solution.
Otherwise
$$\dfrac{\tan\dfrac\pi{12}}{\tan\left(\dfrac\pi{12}-x\right)}=\dfrac{\tan\left(\dfrac\pi{12}+x\right)}{\tan\dfrac\pi{12}}$$
$$\iff\dfrac{\sin\dfrac\pi{12}\cos\left(\dfrac\pi{12}-x\right)}{\cos\dfrac\pi{12}\sin\left(\dfrac\pi{12}-x\right)}=\dfrac{\cos\dfrac\pi{12}\sin\left(\dfrac\pi{12}+x\right)}{\sin\dfrac\pi{12}\cos\left(\dfrac\pi{12}+x\right)}$$
Using Componendo & Dividendo and $\sin(A\pm B)$ formulae,
$$\dfrac{\sin\left(\dfrac\pi{12}+\dfrac\pi{12}-x\right)}{\sin\left\{\dfrac\pi{12}-\left(\dfrac\pi{12}-x\right\}\right)}=\dfrac{\sin\left(\dfrac\pi{12}+x+\dfrac\pi{12}\right)}{\sin\left\{\dfrac\pi{12}+x-\dfrac\pi{12}\right\}}$$
As $\sin x\ne0,$
$$\sin\left(\dfrac\pi6-x\right)=\sin\left(\dfrac\pi6+x\right)$$
Using Prosthaphaeresis Formulas, $$\sin\left(\dfrac\pi6+x\right)-\sin\left(\dfrac\pi6-x\right)=2\sin x\cos\dfrac\pi6$$
So, $\sin x$ has to be $0$ which is impossible as $x\ne n\pi$
You should be able to use this fact to set up an equation that can be solved for $x$.
– Paul Aljabar Apr 19 '17 at 17:18