I do not think $\sum_{n\geq 1}T_n$ has a closed form, but such inequality can be improved a bit.
We have
$$ T_n = \left(\frac{n!}{(2n+1)!!}\right)^2 = \left(\frac{n!(2n)!!}{(2n+1)!}\right)^2 = \left(\frac{n!^2 2^n}{(2n+1)!}\right)^2 = \frac{4^n}{(2n+1)^2 \binom{2n}{n}^2}$$
and we may borrow a couple of useful lemmas from this answer:
$$\frac{4^n}{(2n+1)\binom{2n}{n}}=\int_{0}^{\pi/2}\sin(x)^{2n+1}\,dx \tag{1}$$
$$\frac{\arcsin(x)}{\sqrt{1-x^2}}=\frac{1}{2}\sum_{n\geq 1}\frac{4^n x^{2n-1}}{n\binom{2n}{n}},\qquad \arcsin^2(x)=\frac{1}{2}\sum_{n\geq 1}\frac{(4x^2)^n}{n^2\binom{2n}{n}}\tag{2}$$
to derive:
$$ \sum_{n\geq 1}\frac{x^{2n+1}}{(2n+1)\binom{2n}{n}}=-x+\frac{4}{\sqrt{4-x^2}}\arcsin\frac{x}{2}\tag{3} $$
By $(1)$ and $(3)$ we get:
$$ \sum_{n\geq 1}T_n = \frac{1}{9}\cdot\phantom{}_3 F_2\left(1,2,2;\frac{5}{2},\frac{5}{2};\frac{1}{4}\right)=\int_{0}^{\pi/2}\left[-\sin(x)+\frac{4}{\sqrt{4-\sin^2 x}}\arcsin\frac{\sin x}{2}\right]\,dx $$
from which:
$$ \sum_{n\geq 1}T_n=-1+\int_{0}^{1}\frac{4\arcsin\frac{x}{2}}{\sqrt{(4-x^2)(1-x^2)}}\,dx=-1+\int_{0}^{\pi/6}\frac{4x}{\sqrt{1-4\sin^2 x}}\,dx \tag{4}$$
and by convexity the LHS of $(4)$ is bounded by
$$ -1+\int_{0}^{1}\frac{4\cdot\left[\frac{x}{2}+\left(\frac{\pi}{6}-\frac{1}{2}\right)x^3\right]}{\sqrt{(4-x^2)(1-x^2)}}\,dx = \frac{6-4\pi -9\log(3)+5\pi \log(3)}{6}<\color{red}{\frac{17}{127}}.\tag{5} $$
$(4)$ also provides a decent lower bound:
$$ \sum_{n\geq 1}T_n \geq -1+\int_{0}^{1}\frac{2x}{\sqrt{(1-x^2)(4-x^2)}}\,dx = \color{red}{-1+\log(3).}\tag{6}$$