Let $\pm \alpha, \pm \beta$ denote the roots of the polynomial $f(x)=x^4+ax^2+b\in \mathbb{Z}[x]$. Prove that $f(x)$ is irreducible over $\mathbb{Q}$ if and only if $\alpha ^2, \alpha \pm\beta$ are not elements of $\mathbb{Q}.$
$\Rightarrow$
Suppose $f(x)$ is irreducible. $f(x)=(x-\alpha)(x+\alpha)(x-\beta)(x+\beta)=(x^2-\alpha^2)(x^2-\beta^2)$. So, $\alpha^2$ is not in $\mathbb{Q}$. $f(x)=(x-\alpha)(x+\alpha)(x-\beta)(x+\beta)=(x^2+(\alpha-\beta)x-\alpha\beta)(x^2-(\alpha-\beta)x-\alpha\beta)$. $\alpha\beta$ is in $\mathbb{Q}$ if $b$ is a square.
How to show $\alpha\pm\beta$ are not in $\mathbb{Q}?$