1

Let $\left|\cdot\right|$ be absolute value of a real number. Let $\langle\cdot\rangle$ be two-dimensional, Euclidean vector's norm.

Let a$\, =(x_1,y_1)$ and let b $=(x_2,y_2)$ .

I have the result that $||r_1|-|r_2||\leq |r_1-r_2|$ for $r_1,r_2\in\mathbb R$.

How do I prove that $\big|\big<$a$\big>-\big<$b$\big>\big|\leq\big<$a-b$\big>$?

DMcMor
  • 9,407
asdasdf
  • 769
  • This is the reverse triangle inequality ... a proof is given here https://math.stackexchange.com/questions/127372/reverse-triangle-inequality-proof – K Split X Apr 18 '17 at 14:04

1 Answers1

2

So, I note the euclidean norm $\|\cdot \|$, and the scalar product $\langle \cdot , \cdot\rangle$ $$ \|a-b\|^2 = \langle a-b, a-b \rangle = \|a\|^2 + \|b\|^2 - 2\langle a, b \rangle. $$ Or, using the Cauchy-Schwartz inequality $$ \langle a, b \rangle \le | \langle a, b \rangle | \le \| a\| \|b\| $$ So $$ \|a-b\|^2 \ge (\|a\| - \|b\|)^2 $$ And hence $$ \|a - b\| \ge | \|a\| - \|b\| |. $$