Let $\left|\cdot\right|$ be absolute value of a real number. Let $\langle\cdot\rangle$ be two-dimensional, Euclidean vector's norm.
Let a$\, =(x_1,y_1)$ and let b $=(x_2,y_2)$ .
I have the result that $||r_1|-|r_2||\leq |r_1-r_2|$ for $r_1,r_2\in\mathbb R$.
How do I prove that $\big|\big<$a$\big>-\big<$b$\big>\big|\leq\big<$a-b$\big>$?