A function $f:\mathbb{R^+}→\mathbb{R}$ satisfies the condition $f(ab)=f(a)+f(b)$ for $a,b>0$. If $f(x)$ is continuous at $x=1$, then prove that $f$ is continuous on $\mathbb{R^+}$.
Attempt:
I have proved $f(1)=0$, $f(1/c)=-f(c),~~ c>0$.
Consider a sequence $\{x_n\}$ in $\mathbb{R^+}$ converges to $c>0$, then $$\lim_{n\to \infty}f(x_n)=\lim_{n\to \infty}f(\frac{x_n}{c}c)=\lim_{n\to \infty}f(\frac{x_n}{c})+\lim_{n\to \infty}f(c)$$
how to proceed further to use sequential criterion of continuity to prove that $f$ is continuous on $\mathbb{R^+}$.
My aim is to use sequential criterion of continuity $x_n\to c$ and $f(x_n)\to f(c)$ implies $f$ is continuous.
Please help.