I'm trying to prove that:
$$F\,\{f'(x)\} = -i\omega F(\omega) \qquad (1) $$
where $\, F(\omega) = F\,\{f(x)\}$
This is my procedure so far:
$$F\,\{f'(x)\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(t)e^{i\omega t} dt$$
Integrating by parts I obtained:
$$=\frac{1}{\sqrt{2\pi}} \big[ \space f(t) e^{i\omega t} \space \big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} i\omega f(t)e^{i\omega t} dt \space \big]$$
Now, in order to (1) to be true I need to get:
$$ f(t)e^{i\omega t} \space \big|_{-\infty}^{\infty} =0 \qquad (2)$$
I developed it and got the following:
$$ f(\infty)e^{i\omega \infty} - f(-\infty)e^{-i\omega \infty } = f(\infty)e^{i\omega \infty} - 0= f(t)e^{i\omega \infty} $$
I undarstand that the second term is $0$, since f(t) must have a value to accomplish Dirichlet conditions (and $e^{-\infty} = 0$), but I don't see how $ f(\infty)e^{i\omega \infty}$ is $0$.