If $x+\dfrac{1}{x}=2017$, then the value of $x^{2017}+\dfrac{1}{x^{2017}}$ is,
A) $2017^{2016(\sqrt{5}-\sqrt{3})}$
B) $2017^{2016(\sqrt{3}-\sqrt{2})}$
C) $2017^{2\sqrt{3}}$
D) $2017^{3\sqrt{2}}$
E) None of the above
Progress: We could make use of the identity $$x^{m+n}+\dfrac{1}{x^{m+n}}=\left( x^m+\dfrac{1}{x^{m}}\right)\left(x^{n}+\dfrac{1}{x^{n}}\right)-\left(x^{m-n}+\dfrac{1}{x^{m-n}}\right), $$
however this is quite tedious since partitioning $2017$ and going on further takes a lot of time. Any solutions or hints are welcome.