Please help me find the sum of this series:
$$1 + \frac{2}{3}\cdot\frac{1}{2} + \frac{2}{3}\cdot\frac{5}{6}\cdot\frac{1}{2^2} + \frac{2}{3}\cdot\frac{5}{6}\cdot\frac{8}{9}\cdot\frac{1}{2^3} + \cdots$$
All I could figure out was to find the $n^{\text{th}}$ term as:
$$a_n = \frac{2 \cdot (2+3) \cdots(2+3(n-1))}{3 \cdot 6 \cdot 9 \cdots 3(n-1)} \cdot\frac{1}{2^{n-1}}$$
What To do ahead of it. I don't know. Please help.