Saff and Snider in their book define order axioms as below:
- If $\alpha\neq 0$ then either $\alpha>0$ or $\alpha<0$.
- If $\alpha>0$ and $\beta>0$ then $\alpha+\beta>0$.
- If $\alpha>0$ and $\beta>0$ then $\alpha\beta>0$.
I have to prove the impossibility of ordering in $\mathbb{C}$. So suppose $i>0$. Then using (3), $$i^2>0\Rightarrow -1>0\Rightarrow (-1)(-1)>0\Rightarrow 1>0.$$ Now I want to show that $0>1$ as well to get a contradiction. How do I proceed?