Hint:
Let's introduce $B_r(P)$ as it is defined and $\|\ f\|_{L_{p}{\{\text{Area of integrating}\}}}=\left(\int\limits_{\text{Area of integrating}}|f(x)|^p dx\right)^{\frac{1}{p}}$. The key to solving the problem are triangle inequalities as it is shown below:
$$\|g\|_{L_{p}\{B_{0.5|t|}(0)\}}\leqslant\|g_{(t)}+g\|_{L_{p}\{B_{0.5|t|}(0)\}}+\|g_{(t)}\|_{L_{p}\{B_{0.5|t|}(0)\}}$$
and:
$$\|g_{(t)}+g\|_{L_{p}\{B_{0.5|t|}(0)\}}\leqslant \|g\|_{L_{p}\{B_{0.5|t|}(0)\}}+\|g_{(t)}\|_{L_{p}\{B_{0.5|t|}(0)\}}$$
Notice that: $$\|g_{(t)}+g\|_{L_p}=\left(\|g_{(t)}+g\|_{L_{p}\{B_{0.5|t|}(0)\}}^p+\|g_{(t)}+g\|_{L_{p}\{B_{0.5|t|}(-t)\}}^p+\|g_{(t)}+g\|_{L_{p}\{\overline{B_{0.5|t|}(0)\cup B_{0.5|t|}(-t)}\}}^p\right)^{\frac{1}{p}}$$