How do I evaluate $$\int_0^\infty e^{-u^2}\cos(xu)du$$
Any hints?
How do I evaluate $$\int_0^\infty e^{-u^2}\cos(xu)du$$
Any hints?
One may differentiate under the integral sign: let $J(x) = \int_0^{\infty} e^{-u^2}\cos{xu} \, du$. We have $$ J'(x) = -\int_0^{\infty} ue^{-u^2}\sin{xu} \, du $$ Integrating by parts, $$ J'(x) = \left[\frac{1}{2} e^{-u^2}\sin{xu} \right]_0^{\infty} - \frac{x}{2}\int_0^{\infty} e^{-u^2}\cos{xu} \, du, $$ so $J'(x) = -\frac{x}{2}J(x)$. We also know $J(0) = \sqrt{\pi}/2$, and solving the differential equation gives $$ J(x) = \frac{\sqrt{\pi}}{2} e^{-x^2/4}. $$
We have $$\int_0^\infty\!du\,e^{-u^2} \cos(xu) = \frac12 \mathop{\rm Re}\int_{-\infty}^\infty\!du\,e^{-u^2} e^{ixu}$$ shifting the contour to $ u= v+ i x/2$ with $v\in\mathbb{R}$ and noting that the contributions at $|u| \to \infty$ vanish, we obtain $$\int_0^\infty\!du\,e^{-u^2} \cos(xu)= \frac12 \mathop{\rm Re}\int_{-\infty}^\infty\!dv\, e^{-v^2 -x^2/4} = \frac{\sqrt{\pi}}2 e^{-x^2/4}. $$