2

$$\int_0^\infty e^{-(x-\frac{1}{x})^2} dx$$

Any hints?

Jaideep Khare
  • 19,293
math31
  • 403

3 Answers3

7

Hint. One may apply the following result, $$ \int_{-\infty}^{+\infty}f\left(x-\frac{a}x\right)\mathrm{d}x=\int_{-\infty}^{+\infty} f(x)\: \mathrm{d}x ,\qquad a>0, $$ which is true for any integrable $f$ over $\mathbb{R}$.

Olivier Oloa
  • 120,989
1

Putting $u=x-1/x$, $x = \frac{1}{2}u+\sqrt{4+u^2} $ so $dx = \left( 1 + \frac{u}{\sqrt{u^2+4}} \right)\frac{du}{2} $. The interval of integration changes to $(-\infty,\infty)$, so you have $$ \int_{-\infty}^{\infty} e^{-u^2}\left( 1 + \frac{u}{\sqrt{u^2+4}} \right)\frac{du}{2} = \frac{1}{2} \int_{-\infty}^{\infty} e^{-u^2} \, du $$ since the second term is odd and hence has integral zero. Of course, we know $\int_{-\infty}^{\infty} e^{-u^2} \, du=\sqrt{\pi}$.

Chappers
  • 67,606
0

$x = \frac{1}{y}$ : $$\int_0^\infty e^{-(x-\frac{1}{x})^2}dx = \int_0^\infty e^{-(\frac{1}{y}-y)^2}\frac{dy}{y^2}$$ $t =x-\frac{1}{x}, dt =(1+\frac{1}{x^2})dx $ : $$\int_0^\infty e^{-(x-\frac{1}{x})^2}dx = \frac12\int_0^\infty e^{-(x-\frac{1}{x})^2}(1+\frac{1}{x^2})dx = \frac12\int_{-\infty}^\infty e^{-t^2}dt = \frac{\sqrt{\pi}}{2}$$

reuns
  • 77,999
  • As Olivier Oloa mentioned, it works the same way with $\int_0^\infty f(x-\frac{1}{x}) dx = \frac{1}{2} \int_{-\infty}^\infty f(t)dt$ – reuns Apr 11 '17 at 20:30