I need help trying to prove $$ \lnot (A \Rightarrow B) \vDash A \land \lnot B $$ in natural deduction.
I've come this far:
$$ \begin{array}{|l}\hline \lnot (A \Rightarrow B) \text{ premise} \\ ~~\begin{array}{|l}\hline B \text{ assumption} \\ ~~\begin{array}{|l}\hline A \text{ assumption} \\ B \text{ copy} \\\hline \end{array}\\ A \Rightarrow B \\ \bot \\\hline \end{array}\\ \lnot B \\ ~~\begin{array}{|l}\hline \lnot A \text{ assumption}\\\vdots\\\hline \end{array}\\\hline \end{array} $$
And then...?