I would like to show that $\lim_{n\to\infty}(1+1/n)^n=e$, using the binomial theorem and the power series expansion of $e$. So to be clear: I do not want to use that $e^x:=\lim_{n\to\infty}(1+x/n)^n$, because that's not how I've learned the definition of $e^x$.
Basically I would like to show the following: $$ \lim_{n\to\infty}\sum_{k=0}^n\begin{pmatrix}n\\k\end{pmatrix}\left(\frac{1}{n}\right)^k=\sum_{k=0}^\infty\frac{1}{k!} $$ I'm guessing this should be possible. Maybe some rewriting could work: $$ \sum_{k=0}^n\begin{pmatrix}n\\k\end{pmatrix}\left(\frac{1}{n}\right)^k=\sum_{k=0}^n\frac{1}{k!}\cdot\frac{n!}{(n-k)!}\cdot\left(\frac{1}{n}\right)^k $$
EDIT (I was shown a mistake in the comments)
So I have to show the following: $$ \lim_{n\to\infty}\sum_{k=0}^n\frac{1}{k!}\frac{n!}{(n-k)!}\cdot\left(\frac{1}{n}\right)^k=\lim_{n\to\infty}\sum_{k=0}^n\frac{1}{k!}. $$
This seems doable, given that I see the term $\begin{align}\frac{1}{k!}\end{align}$ at both sides. So what can I do with $\begin{align}\frac{n!}{(n-k)!}\cdot\left(\frac{1}{n}\right)^k\end{align}$?
$$\lim_{n\to\infty}\sum_{k=0}^n\frac{1}{k!}\cdot\frac{n!}{(n-k)!}\cdot\left(\frac{1}{n}\right)^k=\lim_{n\to\infty}\sum_{k=0}^n\frac{1}{k!}$$ not this, $$ \lim_{n\to\infty}\sum_{k=0}^n\frac{n!}{(n-k)!}\cdot\left(\frac{1}{n}\right)^k=1. $$
– Sahil Kumar Apr 09 '17 at 19:04