I am trying to construct a more intuitive proof of the Schwarz Inequality.
If $a_1, ...,a_n$ and $b_1,...,b_n$ are complex numbers then
$|\sum\limits_{j=1}^na_j\overline{b_j}|^2 \leq \sum\limits_{j=1}^n|a_j|^2+\sum\limits_{j=1}^n|b_j|^2$
Here is what I have so far:
Put $a_k = w_k + x_ki$ and $b_k = y_k + z_ki$. $|\sum\limits_{j=1}^n\left[\left(w_j+x_ji\right)\left(y_j-z_ji\right)\right]|^2\leq\sum\limits_{j=1}^n\left(w_j^2+x_j^2\right)+\sum\limits_{j=1}^n\left(y_j^2+z_j^2\right)$ $\bigg(\sum\left(w_j+y_j\right)\bigg)^2+\bigg(\sum\left(x_j-z_j\right)\bigg)^2\leq\sum\left(w_j^2+x_j^2\right)+\sum\left(y_j^2+z_j^2\right)$
Obviously this is now an inequality involving real numbers. I am looking for guidance on how to prove this last inequality.