$$\dfrac{\sin(x)}{x}=\displaystyle\prod_{i=1}^\infty\left(1-\dfrac{x^2}{i^2\pi^2}\right)= \left(1+\dfrac{x}{\pi}\right) \left(1-\dfrac{x}{\pi}\right) \left(1+\dfrac{x}{2\pi}\right) \left(1-\dfrac{x}{2\pi}\right) \left(1+\dfrac{x}{3\pi}\right) \ldots$$
They use this form for proving $\zeta(2),\zeta (4)$ etc., but how? Yes it has true root and $x=0$, but this function might be another.For example, let $f$ be, $f(x)=0$ for $x=nt,\quad n\in\mathbb Z,t\in\mathbb R$.$f(x)=n^x\dfrac{\sin x}{x},\quad n\in\mathbb R$
Of course we can say that ;
$$f(x)=\displaystyle\prod_{i=1}^\infty\left(1-\dfrac{x^2}{i^2\pi^2}\right)= \left(1+\dfrac{x}{\pi}\right) \left(1-\dfrac{x}{\pi}\right) \left(1+\dfrac{x}{2\pi}\right) \left(1-\dfrac{x}{2\pi}\right) \left(1+\dfrac{x}{3\pi}\right) \ldots$$
but $f(x)$ doesn't equal to $\dfrac{\sin x}{x}$
How can we show exactly what $\dfrac{\sin x}{x}$ equals to ? If you can explain clearly please give also advanced proofs.Thank you in advance.
For example, in there.
– Micheal Brain Hurts Apr 09 '17 at 09:48