For integral $m$, we have
$$J_m(x) = \sum_{j=0}^\infty \frac{(-1)^j}{j!\ \Gamma(j+m+1)}\left(\frac{x}{2}\right)^{2j+m} = \sum_{j=0}^\infty \frac{(-1)^j}{j!(j+m)!}\left(\frac{x}{2}\right)^{2j+m}$$
I'm curious if $J_m(x) = i^m$ for some limit of $x$.
If we send $x\to 2i$, for example, we get
$$J_m(2i) = i^m\sum_{j=0}^\infty \frac{1}{j!(j+m)!}$$
which doesn't quite do it.