This answer uses rook polynomials, for more details on the theory see my answer here or you will find plenty of information on the Web. I would highly recommend learning about rook polynomials as they provide a powerful tool for quite a variety of problems, especially permutations with restricted positions and matching problems.
The problem is equivalent to placing $5$ non-attacking rooks on the following chessboard.
$$\begin{array}{cc}
&\text{rooms}\\
\text{guests}&
\begin{array}{c|c|c|c|c|c|c|c|}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1 & \bbox[silver,10px]{\phantom{H}} & \bbox[silver,10px]{\phantom{H}} & \bbox[silver,10px]{\phantom{H}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} \\
\hline 2 & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \bbox[silver,10px]{\phantom{H}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} \\
\hline 3 & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \bbox[silver,10px]{\phantom{H}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} \\
\hline 4 & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \bbox[silver,10px]{\phantom{H}} & \Large\phantom{\unicode{x265c}} \\
\hline 5 & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \bbox[silver,10px]{\phantom{H}} \\
\hline\end{array}
\end{array}$$
for example, a valid configuration is:
$$\begin{array}{cc}
&\text{rooms}\\
\text{guests}&
\begin{array}{c|c|c|c|c|c|c|c|}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1 & \bbox[silver,10px]{\phantom{H}} & \bbox[silver,10px]{\phantom{H}} & \bbox[silver,10px]{\phantom{H}} & \Large\unicode{x265c} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} \\
\hline 2 & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\unicode{x265c} & \bbox[silver,10px]{\phantom{H}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} \\
\hline 3 & \Large\unicode{x265c} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \bbox[silver,10px]{\phantom{H}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} \\
\hline 4 & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\unicode{x265c} & \bbox[silver,10px]{\phantom{H}} & \Large\phantom{\unicode{x265c}} \\
\hline 5 & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\phantom{\unicode{x265c}} & \Large\unicode{x265c} & \bbox[silver,10px]{\phantom{H}} \\
\hline\end{array}
\end{array}$$
which is the room assignment:
$$\begin{array}{c|c|c|c|c|c}
\text{guest} &1 &2 &3 &4 &5 \\
\hline\text{room} &4 &3 &1 &5 &6\\
\end{array}$$
Now you have $5$ disjunct forbidden subboards, the one in the top row made of $3$ horizontally adjacent squares which has rook polynomial
$$1+3x$$
and one in each row $2,3,4$ and $5$, each with rook polynomial
$$1+x$$
since these subboards are disjunct (no common rows or columns) we can simply multiply them to give the rook polynomial for the entire subboard
$$(1+3x)(1+x)^4 = 1+7x+18x^2+22x^3+13x^4+3x^5$$
which can then be modified to give the polynomial
$$x^7-7x^6+18x^5-22x^4+13x^3-3x^2$$
which can be used according to rook theory to give the desired count
$$\begin{align}\text{desired count}&=\frac{1}{(7-5)!}\int_{0}^{\infty}e^{-x}(x^7-7x^6+18x^5-22x^4+13x^3-3x^2)\: dx \\&= 852\end{align}$$