There is a nice way to simplify this. Take the dot product of the above with $\varphi_u$ and $\varphi_v$ to get:
\begin{equation*}
\begin{split}
<\varphi_{uu}, \varphi_u> &= \boldsymbol\Gamma_{11}^1\cdot<\varphi_u, \varphi_u>+\>\>\boldsymbol\Gamma_{11}^2\cdot<\varphi_v, \varphi_u> + \>\>\boldsymbol e\cdot<\boldsymbol{\vec n}, \varphi_u>\\[2ex]
&= \boldsymbol\Gamma_{11}^1\cdot \boldsymbol E + \boldsymbol\Gamma_{11}^2\cdot\boldsymbol F\\[4ex]
<\varphi_{uv}, \varphi_u> &= \boldsymbol\Gamma_{12}^1\cdot<\varphi_u, \varphi_u> +\>\> \boldsymbol\Gamma_{12}^2\cdot<\varphi_v, \varphi_u> + \>\>\boldsymbol f\cdot <\boldsymbol{\vec n}, \varphi_u>\\[2ex]
&= \boldsymbol\Gamma_{12}^1\cdot\boldsymbol E + \boldsymbol\Gamma_{12}^2\cdot\boldsymbol F\\[4ex]
<\varphi_{vv}, \varphi_u> &= \boldsymbol\Gamma_{22}^1\cdot<\varphi_u, \varphi_u> +\>\> \boldsymbol\Gamma_{22}^2\cdot<\varphi_v, \varphi_u> + \>\>\boldsymbol g\cdot<\boldsymbol{\vec n}, \varphi_u>\\[2ex]
&= \boldsymbol\Gamma_{22}^1\cdot \boldsymbol E+\boldsymbol\Gamma_{22}^2\cdot\boldsymbol F\\[4ex]
<\varphi_{uu}, \varphi_v> &= \boldsymbol\Gamma_{11}^1\cdot<\varphi_u, \varphi_v> +\>\> \boldsymbol\Gamma_{11}^2 \cdot<\varphi_v, \varphi_v> + \>\>\boldsymbol e\cdot<\boldsymbol{\vec n}, \varphi_v>\\[2ex]
&= \boldsymbol\Gamma_{11}^1\cdot\boldsymbol F + \boldsymbol\Gamma_{11}^2\cdot \boldsymbol G\\[4ex]
<\varphi_{uv}, \varphi_v> &= \boldsymbol\Gamma_{12}^1\cdot<\varphi_u, \varphi_v>+\>\>\boldsymbol\Gamma_{12}^2\cdot<\varphi_v, \varphi_v>+\>\>\boldsymbol f\cdot<\boldsymbol{\vec n}, \varphi_v>\\[2ex]
&=\boldsymbol\Gamma_{12}^1\cdot\boldsymbol F + \boldsymbol\Gamma_{12}^2\cdot\boldsymbol G\\[4ex]
<\varphi_{vv}, \varphi_v> &= \boldsymbol\Gamma_{22}^1\cdot<\varphi_u, \varphi_v>+\>\>\boldsymbol\Gamma_{22}^2\cdot<\varphi_v, \varphi_v>+\>\>\boldsymbol g\cdot<\boldsymbol {\vec n}, \varphi_v>\\[2ex]
&=\boldsymbol\Gamma_{22}^1\cdot\boldsymbol F + \boldsymbol\Gamma_{22}^2\cdot\boldsymbol G\\[4ex]
\end{split}
\end{equation*}