$\newcommand{\P}{\mathbb{P}}$I would like to prove that stopping time:
$\sigma=\inf\{t\geqslant0: |B_t|=\frac{1}{2}(1+\sqrt{1+t})\}$
is integrable.
This is part of the answer to the question here.
I've tried to estimate ${\P}(\sigma\geqslant t)$ in the following way: $$\begin{array}{rcl}\P(\sigma\geqslant t) & = & \P(\forall s<t |B_s|\leqslant \frac{1}{2}(1+\sqrt{1+s} ) \\ & = & \P(\forall s<t |B_1|\sqrt{s}\leqslant \frac{1}{2}(1+\sqrt{1+s}))\\ &= &\P\left(\forall s<t |B_1|\leqslant \frac{1}{2}\left(\frac{1}{s}+\sqrt{1+\frac{1}{s}}\right)\right) \end{array}$$
I'm not sure if it is correct (I get something which doesn't converge).
Thank you in advance.