Evaluate $\displaystyle\int x^2e^{x^2} dx$
Try($1$)(integral by parts)(unsuccessful)
$$\displaystyle\int x^2e^{x^2}dx=x^2\left(\int e^{x^2} dx\right)-2\int x\left(\int e^{x^2} dx\right)dx$$
I don't know how to calculate $\left(\displaystyle\int e^{x^2} dx\right)$, as well.
Try($2$)(integral by parts)(unsuccessful)
$$\displaystyle\int x^2e^{x^2}dx=e^{x^2}x^3/3-2/3\int x^4e^{x^2}dx $$$$\rightarrow$$$$\int x^4e^{x^2}dx=x^5e^{x^2}/5-2/5\int x^6e^{x^2}dx$$$$\vdots$$
Try($3$)(Integration by substitution)(unsuccessful)
$$x=\sqrt t$$$$\displaystyle\int x^2e^{x^2}dx=1/2\int \sqrt t\;e^t\; dt$$ Let's apply "integral by parts"
$$\int \sqrt t\;e^t\; dt=\sqrt t\;e^t-1/2\int\dfrac{e^t}{\sqrt t}dt$$$$\vdots$$
Try($4$)(Integration by substitution(trigonometric))(unsuccessful)
$$x=\sin u$$ $$\displaystyle\int x^2e^{x^2}dx=\int e^{\sin^2 u}\sin^2 u\cos u du$$