Let $p$ be prime and $k$ be an integer where $0<k<p$.
Let $n_{p,k}$ denote the number of subsets $S$ of $\{1, 2, ..., p\}$ such that $\left|S\right| = k$ and such that the sum of all the elements in $S$ is divisible by $p$.
Show that $n_{p,k} = \dfrac{1}{p}\dbinom{p}{k}$.
Attempted work :
Let $l$ be positive integer such that $kl \equiv 1\; (\bmod p)$
and $\{a_1, a_2, ..., a_k\} \in \mathcal F_a(p,k)$
Let $f_{a,b} : \mathcal F_a(p,k) \to \mathcal F_b(p,k)$ defined by
$f(\{a_1, a_2, ..., a_k\}) = \{b_1, b_2, ..., b_k\}$ , where
$a_1 + l(a-b) \equiv b_1\; (\bmod p)\;\;, \; 0\leq b_1<p$
$a_2 + l(a-b) \equiv b_2\; (\bmod p)\;\;, \; 0\leq b_2<p$
.
.
$a_k + l(a-b) \equiv b_k\; (\bmod p)\;\;, \; 0\leq b_k<p$
1) To show that $f$ is injective
Let $f(\{a_1, a_2, ..., a_k\}) = f(\{a'_1, a'_2, ..., a'_k\})$
so $\{b_1, b_2, ..., b_k\} = f(\{a'_1, a'_2, ..., a'_k\})$
we obtain $a'_i + l(a-b) \equiv b_i\; (\bmod p)$
and $a'_i \equiv a_i\; (\bmod p)$
so $a'_i = a_i , \;\forall i = 1, 2, ..., p$, thus $f$ is injective.
2) To prove that $f$ is surjective
Let $\{b_1, b_2, ..., b_k\} \in \mathcal F_b(p,k)$
Choose
$a_1 \equiv b_1- l(a-b) \; (\bmod p)$
$a_2 \equiv b_2- l(a-b) \; (\bmod p)$
.
.
$a_k \equiv b_k- l(a-b) \; (\bmod p)$ , where $gcd(l,p) = 1$
so, $f(\{a_1,\dots,a_k\}) = \{b_1, \dots, b_k\}$, thus $f$ is surjective.
Therefore $f$ is bijective, $|\mathcal F_a(p,k)|= |\mathcal F_b(p,k)|\;\forall a, b$ so $|\mathcal F_0(p,k)|= \frac{1}{p}\binom{p}{k}$.