I'll start from the last integral
By integration by parts
$$\int^1_0 \frac{\log(z)}{1-z^2}\mathrm{Li}_2(z^2)\, dz = -\frac{π^4}{144}+\int^1_0\frac{\log(1-z^2)(\log(z) \log(1 + z) + \mathrm{Li}_2(1 - z) + \mathrm{Li}_2(-z))}{z}dz$$
Separate to reduce to the evaluation fo three integrals
$$\int^1_0 \frac{\log(z)}{1-z^2}\mathrm{Li}_2(z^2)\, dz = -\frac{π^4}{144}+\color{Red}{I_1}+\color{blue}{I_2}+\color{green}{I_3}$$
Let us start by $\color{Red}{I_1}$
\begin{align}\color{Red}{I_1}&=\int^1_0\frac{\log(1-z^2)\log(z) \log(1 + z) }{z}\,dz \\
&= \int^1_0\frac{\log(z)\log^2(1+z)}{z}\,dz+\int^1_0\frac{\log(1-z)\log(z) \log(1 + z)}{z}dz \\
&=\color{brown}{I_4}+\color{purple}{I_5}\end{align}
Note that $\color{brown}{I_4}$ has been already evaluated to
$$\color{brown}{I_4}=\int_0^1\frac{\log^2(1+z)\log(z)}z\mathrm dz =\frac{\pi^4}{24}-\frac16\ln^42+\frac{\pi^2}6\ln^22-\frac72\zeta(3)\ln2-4\operatorname{Li}_4\!\left(\tfrac12\right)$$
Let us look for $\color{blue}{I_2}$
\begin{align}\color{blue}{I_2}=\int^1_0\frac{\log(1-z^2)\mathrm{Li}_2(1 - z)}{z}dz &= \int^1_0 \frac{\log(1-z^2)(\zeta(2)-\log(z)\log(1-z)-\mathrm{Li}_2(z))}{z}\,dz\\
&= -\frac{π^4}{72}-\int^1_0 \frac{\log(z)\log^2(1-z)}{z}\,dz-\color{purple}{I_5}\\&-\int^1_0 \frac{\log(1-z^2)\mathrm{Li}_2(z)}{z}\,dz
\\&= -\int^1_0 \frac{\log(z)\log^2(1-z)}{z}\,dz-\int^1_0 \frac{\log(1+z)\mathrm{Li}_2(z)}{z}\,dz -\color{purple}{I_5}\\
&=3\zeta(4)-\zeta^2(2)-\int^1_0 \frac{\log(1+z)\mathrm{Li}_2(z)}{z}\,dz-\color{purple}{I_5}\\
&=-\frac{π^4}{120}+\int^1_0 \frac{\log(1-z)\mathrm{Li}_2(-z)}{z}\,dz-\color{purple}{I_5}\\
&=-\frac{π^4}{120}+\color{#5D8AA8}{I_6}-\color{purple}{I_5}\end{align}
Now we need to evaluate $\color{green}{I_3}$
\begin{align}\color{green}{I_3}=\int^1_0\frac{\log(1-z^2)\mathrm{Li}_2(-z)}{z}dz &= \int^1_0 \frac{\log(1-z)\mathrm{Li}_2(-z)}{z}\,dz+\int^1_0 \frac{\log(1+z)\mathrm{Li}_2(-z)}{z}\,dz\\
&=\color{#5D8AA8}{I_6} -\frac{\pi^4}{288}\end{align}
The mysterious $\color{#5D8AA8}{I_6}$ is
\begin{align}\color{#5D8AA8}{I_6}=\int^1_0 \frac{\log(1-z)\mathrm{Li}_2(-z)}{z} \,dz&=-\sum_{k=1}^\infty \frac{1}{k}\sum_{n=1}^\infty \frac{(-1)^n}{n^2}\int^1_0 z^{k+n-1}\,dz\\
&=-\sum_{k=1}^\infty \frac{1}{k}\sum_{n=1}^\infty \frac{(-1)^n}{n^2(n+k)}
\\&=-\sum_{n=1}^\infty \frac{(-1)^{n-1} H_n}{n^3}\\
&=-\frac{11\pi^4}{360}+\frac{\ln^42-\pi^2\ln^22}{12}+2\mathrm{Li}_4\left(\frac12\right)+\frac{7\ln 2}{4}\zeta(3) \end{align}
Collecting the results together
\begin{align}\int^1_0 \frac{\log(z)}{1-z^2}\mathrm{Li}_2(z^2)\, dz
&= -\frac{π^4}{144}+\color{Red}{I_1}+\color{blue}{I_2}+\color{green}{I_3}
\\&=-\frac{π^4}{144}+\color{brown}{I_4}+\color{purple}{I_5}-\frac{π^4}{120}+\color{#5D8AA8}{I_6}-\color{purple}{I_5}+\color{#5D8AA8}{I_6} -\frac{\pi^4}{288}
\\&=\frac{121 π^4}{1440} + \frac{1}{3} π^2 \log^2(2) - \frac{1}{3}\log^4(2) - 7 \log(2) ζ(3)- 8 \mathrm{Li}_4\left(\frac{1}{2}\right)\end{align}
Hence we get the final result
\begin{align}\sum_{n =1}^\infty (-1)^{n+1}\psi'(n)^2 &=\frac{49 π^4}{720} +
\frac{1}{6} π^2 \log^2(2) - \frac{1}{6}\log^4(2) - \frac{7}{2} \log(2)
ζ(3)- 4 \mathrm{Li}_4\left(\frac{1}{2}\right) \\&\approx
2.3949463369266426 \end{align}
References
Alternating harmonic sum $\sum_{k\geq 1}\frac{(-1)^k}{k^3}H_k$
How to find ${\large\int}_0^1\frac{\ln^3(1+x)\ln x}x\mathrm dx$