Let $M$ be some finite set. Do we then have that $M^{\mathbb{Z}}=M^{\mathbb{Z}_{\leq 0}}\times M^{\mathbb{Z}_{>0}}$?
Since $M^{\mathbb{Z}}=\prod_{i\in\mathbb{Z}}M_i$ with $M_i=M$ for all $i\in\mathbb{Z}$, it should be possible to split this product, ie. $$ M^{\mathbb{Z}}=\prod_{i\in\mathbb{Z}}M_i=\prod_{i\in\mathbb{Z}_{\leq 0}}M_i\times\prod_{i\in\mathbb{Z}_{>0}}M_i=M^{\mathbb{Z}_{\leq 0}}\times M^{\mathbb{Z}_{>0}}. $$
Or am I completely wrong and think too naively?