Until today, I was convinced that we needed at least 6 generators to generate the Rubik's Cube group. However, consider the following...
$$a = (0,5,7,2)(1,3,6,4)(8,16,24,32)(9,17,25,33)(10,18,26,34)$$
$$b = (5,15,42,24)(6,12,41,27)(7,10,40,29)(16,21,23,18)(17,19,22,20)$$
$$c = (0,26,47,13)(1,28,46,11)(2,31,45,8)(32,37,39,34)(33,35,38,36)$$
$$d = (0,39,40,16)(3,36,43,19)(5,34,45,21)(8,13,15,10)(9,11,14,12)$$
$$e = (2,18,42,37)(4,20,44,35)(7,23,47,32)(24,29,31,26)(25,27,30,28)$$
d^{-1}c^{-1}da^{-1}e^{-1}aeb^{2}d^{-1}b^{-1}ab^{-1}e^{-1}b^{-1}d^{-1}baba^{-1}d^{-1}a^{-1}ca^{-1}e^{-1}aeab^{2}db^{-2}e^{-1}d^{-1}c^{-1}d^{-1}cd^{-2}b^{-1}
dbd^{-1}ec^{-1}e^{-1}d^{-1}ada^{-1}dcd^{-1}c^{-1}eb^{2}c^{2}d^{-1}b^{-1}c^{-2}ebc^{-1}a^{-1}b^{-2}ca^{-1}e^{-1}c^{-1}eca^{2}b^{-1}d^{-1}ba^{-1}b^{-1}dbd^{-1}ada^{-1}dcd^{-1}c^{-1}e^{-1}c^{-1}d^{-1}eada^{-1}de^{-1}cd^{-1}eacea^{-1}e^{-1}a^{-2}c^{-1}e^{-1}ceac^{-1}ba^{-2}b^{-1}ce^{-2}c^{2}e^{2}d^{2}c^{2}a^{-1}b^{2}c^{2}d^{-2}e^{2}ac^{2}abd^{-1}c^{-2}b^{-2}ec^{2}ba^{-1}c^{-2}a^{-1}ed^{-1}b^{2}e^{-1}da^{-2}eabab^{-1}e^{-1}a^{2}b^{-1}e^{-1}beae^{-1}a^{2}cea^{-1}e^{-1}a^{-2}c^{-1}e^{-1}ceaeba^{-1}c^{-1}bdcb^{-2}e^{-1}c^{-1}bd^{-1}cb^{-1}ae^{2}db^{-1}e^{2}d^{-2}ceb^{2}de^{-1}a^{-2}b^{2}e^{-2}d^{-2}c^{-2}d^{-2}e^{-2}ce^{-1}c^{-1}bab^{-1}a^{-1}eacec^{-1}ba^{-1}b^{-1}a^{-1}e^{-1}a^{-1}b^{-1}ce^{2}bc^{-1}ec^{-2}ed^{-1}a^{-2}de^{-2}a^{-1}c^{2}a^{-2}c^{-2}a^{2}c^{2}d^{-1}a^{-1}de^{-1}cdc^{-1}d^{-1}e
= $(13,21,29,37)(14,22,30,38)(15,23,31,39)(40,42,47,45)(41,44,46,43)$
This is a lot of information, but bear with me. The permutations $a$, $b$, $c$, $d$ and $e$ correspond to 5 faces of a Rubik's Cube. I then write an expression in these 5 generators that gives me the inverse of what is usually cited as the 6th generator of the group.
This expression is large, but can anyone verify it?
Note: If someone cares, I am willing to post a You-Tube video that animates the Rubik's Cube and shows that the above sequence actually does rotate the remaining face using only the other faces of the cube.