The form given assumes the full column rank linear system
$$
\mathbf{A}x = b
$$
where
$$
\mathbf{A}\in\mathbb{C}^{m\times n}_{\rho}, \quad b \in\mathbb{C}^{m}, \quad
x\in\mathbb{C}^{n}
$$
There is an additional requirement that $b\notin\mathcal{N}\left(\mathbf{A}^{*}\right)$
The given solution comes from the normal equations
$$
\mathbf{A}^{*} \mathbf{A}x = \mathbf{A}^{*} b
$$
The product matrix can be inverted because the matrix rank is the same as the number of columns. The solution is:
$$
x = \left( \mathbf{A}^{*} \mathbf{A} \right)^{-1} \mathbf{A}^{*}b
$$
Now the issue is to show that that
$$
\mathbf{A}^{\dagger} = \left( \mathbf{A}^{*} \mathbf{A} \right)^{-1} \mathbf{A}^{*}
$$
using the singular value decomposition:
$$
\begin{align}
\mathbf{A} &=
\mathbf{U} \, \Sigma \, \mathbf{V}^{*} \\
%
&=
% U
\left[ \begin{array}{cc}
\color{blue}{\mathbf{U}_{\mathcal{R}}} & \color{red}{\mathbf{U}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{c}
\mathbf{S} \\
\mathbf{0}
\end{array} \right]
% V
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*}
\end{align}
$$
Show that
$$
\mathbf{A}^{*} \mathbf{A} = \color{blue}{\mathbf{V}_{\mathcal{R}}} \, \mathbf{S} \, \color{blue}{\mathbf{V}_{\mathcal{R}}}^{*}
$$
which inverts easily
$$
\left( \mathbf{A}^{*} \mathbf{A} \right)^{-1}
= \color{blue}{\mathbf{V}_{\mathcal{R}}} \, \mathbf{S}^{-2} \, \color{blue}{\mathbf{V}_{\mathcal{R}}}^{*}
$$
Finally
$$
\begin{align}
\left( \mathbf{A}^{*} \mathbf{A} \right)^{-1}\mathbf{A}^{*} &=
\color{blue}{\mathbf{V}_{\mathcal{R}}} \, \mathbf{S}^{-2} \, \color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \left( \color{blue}{\mathbf{V}_{\mathcal{R}}} \, \mathbf{S} \, \color{blue}{\mathbf{U}_{\mathcal{R}}}^{*}\right)
=
\color{blue}{\mathbf{V}_{\mathcal{R}}} \, \mathbf{S}^{-2} \, \color{blue}{\mathbf{U}_{\mathcal{R}}}^{*} \\
%
&= \mathbf{A}^{\dagger}
%
\end{align}
$$