Sketch of the proof
\begin{align*}
-2e^2\int_{0}^{\infty} {x e^{-2e\pi x}\log x\over 1-e^{-2e\pi{x}}}\mathrm dx &= -2e^2\sum_{n=0}^\infty\int^\infty_0 xe^{-2e\pi x (n+1)} \log(x)\mathrm dx \tag{1}
\\&=-2e^2\sum_{n= 1}^\infty\frac{\psi(2)-\log(2e\pi n)}{(2e\pi)^2 n^2} \tag{2}
\\&= \frac{\log(2e\pi)\zeta(2)-\psi(2)\zeta(2)-\zeta'(2)}{2\pi ^2}\tag{3}
\\&= \frac{1}{12}-\zeta'(-1)\tag{4}
\\&=\log A\tag{5}
\end{align*}
Proof of (1)
Use the series expansion
$$\frac{1}{1-e^{2\pi e x}}={e^{-2e\pi x}\over 1-e^{-2e\pi{x}}} =
\sum_{n=0}^\infty e^{-2\pi e x (n+1)}=\sum_{n=1}^\infty e^{-2\pi e x
n}$$
Proof of (3)
Start by the definition of the gamma function
$$\int^\infty_0 x^{v-1} e^{-sx}\,dx = \frac{1}{s^v}\int^\infty_0 x^{v-1} e^{-x}\,dx= \frac{\Gamma(v)}{s^v}$$
By differentiation we have
$$\int^\infty_0 x^{v-1} e^{-sx} \log(x)\,dx = \frac{\Gamma(v)\psi(v)-\log(s)}{s^v}$$
Let $v=2$
$$\int^\infty_0 x e^{-sx} \log(x)\,dx = \frac{\psi(2)-\log(s)}{s^2}$$
Proof of (4)
Use the functional equation
$$\zeta(s)=2^s\pi^{s-1}\sin \left( \frac{s\pi}2\right) \Gamma(1-s)\zeta(1-s)$$
By taking the derivative
$$\zeta'(s)=2^s\pi^{s-1}\log(2\pi)\sin \left( \frac{s\pi}2\right) \Gamma(1-s)\zeta(1-s)+\frac{\pi}{2}2^s\pi^{s-1}\cos\left( \frac{s\pi}2\right) \Gamma(1-s)\zeta(1-s)-2^s\pi^{s-1}\sin \left( \frac{s\pi}2\right) \Gamma(1-s)\psi(1-s)\zeta(1-s)-2^s\pi^{s-1}\sin \left( \frac{s\pi}2\right) \Gamma(1-s)\zeta'(1-s)$$
Take $s \to -1$
$$\zeta'(-1)=-2^{-1}\pi^{-2}\log(2\pi)\zeta(2)+2^{-1}\pi^{-2}\Gamma(2)\psi(2)\zeta(2)+2^{-1}\pi^{-2} \Gamma(2)\zeta'(2)$$
$$2\pi^2\zeta'(-1)=-\log(2\pi)\zeta(2)+\psi(2)\zeta(2)+ \zeta'(2)$$
By some rearrangements and adding $\log(e)=1$
$$\frac{\log(2e\pi)\zeta(2)-\psi(2)\zeta(2)-\zeta'(2)}{2\pi ^2} =
\frac{1}{12}-\zeta'(-1)$$
Proof of (5)
Start by the definition
$$\zeta(s) = \lim_{m \to \infty} \left( \sum_{k=1}^{m} k^{-s} - \frac{m^{1-s}}{1-s} - \frac{m^{-s}}{2} + \frac{sm^{-s-1}}{12} \right) \ , \ \text{Re}(s) >-3.$$
Differentiate with respect to $s$
$$\zeta'(s) = \lim_{m \to \infty} \left(- \sum_{k=1}^{m} k^{-s}\log(k) - \frac{m^{1-s}}{(1-s)^2} +\frac{m^{1-s}}{1-s}\log(m)+\frac{m^{-s}}{2}\log(m)\\ + \frac{m^{-s-1}}{12}-\frac{m^{-s-1}}{12}\log(m)\right) $$
Now let $s \to -1$
$$\zeta'(-1) = \lim_{m \to \infty} \left(- \sum_{k=1}^{m} k\log(k) - \frac{m^{2}}{4} +\frac{m^{2}}{2}\log(m)+\frac{m}{2}\log(m)\\ + \frac{1}{12}-\frac{1}{12}\log(m)\right) $$
Take the exponential of both sides
$$e^{\zeta'(-1)}= e^{1/12}\lim_{m \to \infty} \frac{m^{m^2/2+m/2-1/12} e^{-m^2/4}}{ e^{\sum_{k=1}^{m} k\log(k)}} = e^{1/12}\lim_{m \to \infty} \frac{m^{m^2/2+m/2-1/12} e^{-m^2/4}}{ e^{\sum_{k=1}^{m} k\log(k)}} = \frac{ e^{1/12}}{A} $$
We conclude that
$$\zeta'(-1) = \frac{1}{12}-\log A$$