In mathematics the four color theorem have been proved by letting a computer checking each case, thus proving that each map can be colored by only four colors.
However, this made me think about the underlying nature of proofs in general. Suppose we want to prove a statement and we find a proof, but only by letting a computer run an algorithm and checking each case seperately. Now are we really satisfied with this? The proof has given us no understanding at all for why the statement is true, only that it is true.
So we want to find another proof which is more explanatory and can be constructed in a logical way by a human. But is it true that such a proof exists? Can we prove that such a proof exists or that it doesn't exist?
So my final point is: Is there a way to prove that a statement can be proved only using an algorithm or that is can only be proved in a logical way. Or maybe it can be proved both ways or neither way. And really, what is the fundamental difference between theses two?