My problem: I should calculate this sum: $\sum_{n=0}^{\infty} nx^{2n+1}$.
My solution: $\;$$ x \sum_{n=0}^{\infty} nx^{2n}$,
- Substitution: $x^2 = y$
Then $\;$$ y^{1/2} \sum_{n=0}^{\infty} ny^{n}$, ...
Now I would focus just on $\;$$ \sum_{n=0}^{\infty} ny^{n} = y\sum_{n=0}^{\infty} ny^{n-1}$$, $
Because $\;$$ \sum_{n=0}^{\infty} y^{n} = 1/(1-y)$
EDIT
So $ \sum_{n=0}^{\infty} ny^{n-1} = 1/ (1-y)^2$
Finally $y^{1/2}\sum_{n=0}^{\infty} ny^{n-1} = y^{1/2}/ (1-y)^2 = x/(1-x^2)^2$
$$\sum_{n=0}^\infty x^n = \frac{1}{1-x}$$
By differentiation
$$\sum_{n=1}^\infty nx^{n-1} = \frac{1}{(1-x)^2}$$
– Zaid Alyafeai Mar 29 '17 at 09:59