Firstly, as pointed out by @amd, you've made a mistake with the eigenvectors. The eigenvalues are:
$$(2-\lambda)^2-4=-4\lambda+\lambda^2=\lambda(\lambda-4)=0$$
Which implies that: $\lambda_1=0$ and $\lambda_2=4$.
Therefore, the eigenvectors are:
$$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=0\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies x_1=-x_2 \implies v_1=\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=4\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies x_1=x_2 \implies v_2=\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
Let's now show that the eigenvectors of the matrix are orthogonal. Let's start with the formula for the angle $\theta$ between two vectors $\mathbf{u},\mathbf{v}$:
$$\mathbf{u}\cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\|\cos{\theta}$$
Now, for orthogonal vectors: $\theta=\frac{\pi}{2}$. This is because two Euclidean vectors are called orthogonal if they are perpendicular. Therefore:
$$\mathbf{u}\cdot \mathbf{v}=0$$
Thus, you must show that the dot product of your two eigenvectors $v_1$ and $v_2$ is equal to zero.