Let $I_n$ be given by
$$\begin{align}
I_n&=\int_0^1 \frac{\sin(x)}{x(1+x)^n}\,dx\\\\
&=\int_0^1 (1+x)^{-n}\,dx+\sum_{k=1}^\infty\frac{(-1)^{k}}{(2k+1)!}\int_0^1x^{2k}(1+x)^{-n}\,dx\\\\
&=\frac{1}{n-1}-\frac{2}{2^n(n-1)}+\sum_{k=1}^\infty\frac{(-1)^{k}}{(2k+1)!}\int_0^1 x^{2k}(1+x)^{-n}\,dx\tag 1
\end{align}$$
We can evaluate the integral on the right-hand side of $(1)$ be making the substitution $x\to x-1$ and using the binomial theorem to write $(x-1)^{2k}=\sum_{\ell = 0}^{2k}\binom{2k}{\ell}(-1)^{2k-\ell}x^\ell$. Proceeding we find
$$\int_0^1x^{2k}(1+x)^{-n}\,dx=\sum_{\ell = 0}^{2k}\binom{2k}{\ell}(-1)^{2k-\ell}\frac{1-2^{-n+\ell+1}}{n-(\ell+1)}$$
which shows that $\int_0^1x^{2k}(1+x)^{-n}\,dx=O\left(\frac{1}{n^{2k+1}}\right)$
Finally, we have
$$I_n=\frac{1}{n-1}-\frac{1}{3(n-1)(n-2)(n-3)}+O\left(\frac1{n^5}\right)$$