1

Let $\omega_n$ be the area of the unit sphere $S^{n-1} = \left \{ y \in \mathbb R^n: \|y\| = 1 \right \}$.

If $B_r(x) = \left \{ y \in \mathbb R^n: \|y - x\| \leq r \right \}$ and $S_r(x) = \partial B_r(x) = \left \{ y \in \mathbb R^n: \|y-x\| = 1 \right \}.$

How one can proof that the area of $S_r(x)$ is $A(r) = r^{n-1}\omega_n$ and the volume of $B_r(x)$ is $V = \frac{r^n}{n} \omega_n$?

Since the $V = \int_{0}^r A(\gamma)\, d\gamma $, it's sufficient showing that $A(r) = r^{n-1}\omega_n$ .

Help?

user 242964
  • 1,898

0 Answers0